| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 
 | import gymimport torch
 import torch.nn as nn
 import torch.nn.functional as F
 import numpy as np
 import time
 
 
 GAMMA = 0.95
 LR = 0.01
 
 
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 torch.backends.cudnn.enabled = False
 
 
 class PGNetwork(nn.Module):
 def __init__(self, state_dim, action_dim):
 super(PGNetwork, self).__init__()
 self.fc1 = nn.Linear(state_dim, 20)
 self.fc2 = nn.Linear(20, action_dim)
 
 def forward(self, x):
 out = F.relu(self.fc1(x))
 out = self.fc2(out)
 return out
 
 def initialize_weights(self):
 for m in self.modules():
 nn.init.normal_(m.weight.data, 0, 0.1)
 nn.init.constant_(m.bias.data, 0.01)
 
 
 class Actor(object):
 
 def __init__(self, env):
 
 self.state_dim = env.observation_space.shape[0]
 self.action_dim = env.action_space.n
 
 
 self.network = PGNetwork(state_dim=self.state_dim, action_dim=self.action_dim).to(device)
 self.optimizer = torch.optim.Adam(self.network.parameters(), lr=LR)
 
 
 self.time_step = 0
 
 def choose_action(self, observation):
 
 
 observation = torch.FloatTensor(observation).to(device)
 network_output = self.network.forward(observation)
 with torch.no_grad():
 prob_weights = F.softmax(network_output, dim=0).cuda().data.cpu().numpy()
 
 action = np.random.choice(range(prob_weights.shape[0]),
 p=prob_weights)
 return action
 
 def learn(self, state, action, td_error):
 self.time_step += 1
 
 softmax_input = self.network.forward(torch.FloatTensor(state).to(device)).unsqueeze(0)
 action = torch.LongTensor([action]).to(device)
 neg_log_prob = F.cross_entropy(input=softmax_input, target=action, reduction='none')
 
 
 
 loss_a = -neg_log_prob * td_error
 self.optimizer.zero_grad()
 loss_a.backward()
 self.optimizer.step()
 
 
 
 EPSILON = 0.01
 REPLAY_SIZE = 10000
 BATCH_SIZE = 32
 REPLACE_TARGET_FREQ = 10
 
 
 class QNetwork(nn.Module):
 def __init__(self, state_dim, action_dim):
 super(QNetwork, self).__init__()
 self.fc1 = nn.Linear(state_dim, 20)
 self.fc2 = nn.Linear(20, 1)
 
 def forward(self, x):
 out = F.relu(self.fc1(x))
 out = self.fc2(out)
 return out
 
 def initialize_weights(self):
 for m in self.modules():
 nn.init.normal_(m.weight.data, 0, 0.1)
 nn.init.constant_(m.bias.data, 0.01)
 
 
 class Critic(object):
 def __init__(self, env):
 
 self.state_dim = env.observation_space.shape[0]
 self.action_dim = env.action_space.n
 
 
 self.network = QNetwork(state_dim=self.state_dim, action_dim=self.action_dim).to(device)
 self.optimizer = torch.optim.Adam(self.network.parameters(), lr=LR)
 self.loss_func = nn.MSELoss()
 
 
 self.time_step = 0
 self.epsilon = EPSILON
 
 def train_Q_network(self, state, reward, next_state):
 s, s_ = torch.FloatTensor(state).to(device), torch.FloatTensor(next_state).to(device)
 
 v = self.network.forward(s)
 v_ = self.network.forward(s_)
 
 
 loss_q = self.loss_func(reward + GAMMA * v_, v)
 self.optimizer.zero_grad()
 loss_q.backward()
 self.optimizer.step()
 
 with torch.no_grad():
 td_error = reward + GAMMA * v_ - v
 
 return td_error
 
 
 
 ENV_NAME = 'CartPole-v0'
 EPISODE = 3000
 STEP = 3000
 TEST = 10
 
 
 def main():
 
 env = gym.make(ENV_NAME)
 actor = Actor(env)
 critic = Critic(env)
 
 for episode in range(EPISODE):
 
 state = env.reset()
 
 for step in range(STEP):
 action = actor.choose_action(state)
 next_state, reward, done, _ = env.step(action)
 td_error = critic.train_Q_network(state, reward, next_state)
 actor.learn(state, action, td_error)
 state = next_state
 if done:
 break
 
 
 if episode % 100 == 0:
 total_reward = 0
 for i in range(TEST):
 state = env.reset()
 for j in range(STEP):
 env.render()
 action = actor.choose_action(state)
 state, reward, done, _ = env.step(action)
 total_reward += reward
 if done:
 break
 ave_reward = total_reward/TEST
 print('episode: ', episode, 'Evaluation Average Reward:', ave_reward)
 
 
 if __name__ == '__main__':
 time_start = time.time()
 main()
 time_end = time.time()
 print('Total time is ', time_end - time_start, 's')
 
 |